Influence of hepatotropic and metabiotic correction on the spectrum of free fatty acids in experimental toxic liver damage




carbon tetrachloride, hepatobioptates, monounsaturated free fatty acids, rats


Background. Today most of the scientists are studying the processes of hepatocyte damage under the influence of free fatty acids (FFA) in vitro conditions. Therefore, in vivo studies of the spectrum of FFA in liver pathologies of different genesis, including toxic ones, are of considerable interest. Materials and methods. Toxic liver damage was simulated by subcutaneous injection of CCl4 solution in olive oil into rats. The following groups were formed: control (healthy; n = 15); I — CCl4-induced liver damage without drug correction (n = 6); III — CCl4-induced liver damage + metadoxin (Liveria IC; n = 8); III — CCl4-induced liver damage + metabiotic (Hilac forte) (n = 7). For morphological assessment of steatosis and fibrosis we used three-color qualitative staining of liver samples by Mallory-Slinchenko. Quantitative content of monounsaturated fatty acids (MUFA) in liver homoge­nate was determined by gas chromatography. Results. Evaluation of hepatobioptates in group I rats revealed tissue disorganization with macrovesicular steatosis in the cytoplasm of hepatocytes, the formation of interparticle multiple fibrous septa and inflammatory cell infiltration. The use of metadoxin (group II) and metabiotic (group III) improved the morphological picture of the liver, which was damaged by CCl4. Total MUFA content increased significantly in 118 (p < 0.001), 34 (p < 0.001) and 99 times (p < 0.001), respectively, for groups I–III animals relative to control, but in group II — tended to decrease in 3.5 (p = 0.430) and 2.9 times (p = 0.064), compared to groups I and III, respectively. Conclusions. It was found that correction with methadoxin and metabioticreduced the manifestations of protein-fatty dystrophy in hepatocytes. In all animal research groups, the content of PUFA increased mainly due to significant concentrations of cis-10-pentadecenoic, cis-10-heptadecenoic, trans- and cis-9-octadecenoic and cis-11-eicosenoic acids. MUFA content decreased more under the influence of methadoxin than metabiotic.


Download data is not yet available.


Liu Y, Wen PH, Zhang XX, Dai Y, He Q. Breviscapine ameliorates CCl4‑induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation. Int J Mol Med. 2018 Aug;42(2):755-768. doi:10.3892/ijmm.2018.3651.

Shrestha N, Chand L, Han MK, Lee SO, Kim CY, Jeong YJ. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food Chem Toxicol. 2016 Jul;93:129-137. doi:10.1016/j.fct.2016.04.024.

Hesami Z, Jamshidzadeh A, Ayatollahi M, Geramizadeh B, Farshad O, Vahdati A. Effect of Platelet-Rich Plasma on CCl4-Induced Chronic Liver Injury in Male Rats. Int J Hepatol. 2014;2014:932930. doi:10.1155/2014/932930.

Jung YK, Yim HJ. Reversal of liver cirrhosis: current evidence and expectations. Korean J Intern Med. 2017 Mar;32(2):213-228. doi:10.3904/kjim.2016.268.

Tanaka M, Miyajima A. Liver regeneration and fibrosis after inflammation. Inflamm Regen. 2016 Oct 18;36:19. doi:10.1186/s41232-016-0025-2.

Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med. 2019 Feb;65:37-55. doi:10.1016/j.mam.2018.09.002.

Chang H, Meng HY, Liu SM, et al. Identification of key metabolic changes during liver fibrosis progression in rats using a urine and serum metabolomics approach. Sci Rep. 2017 Sep 12;7(1):11433. doi:10.1038/s41598-017-11759-z.

Zhang B, Yang W, Wang S, et al. Lipid accumulation and injury in primary calf hepatocytes challenged with different long-chain fatty acids. Front Vet Sci. 2020 Oct 15;7:547047. doi:10.3389/fvets.2020.547047.

Wallstab C, Eleftheriadou D, Schulz T, et al. A unifying mathematical model of lipid droplet metabolism reveals key molecular players in the development of hepatic steatosis. FEBS J. 2017 Oct;284(19):3245-3261. doi:10.1111/febs.14189.

Wang M, Zhang XJ, Feng K, et al. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice. Sci Rep. 2016 May 25;6:26826. doi:10.1038/srep26826.

You M, Arteel GE. Effect of ethanol on lipid metabolism. J Hepatol. 2019 Feb;70(2):237-248. doi:10.1016/j.jhep.2018.10.037.

Li M, Xu C, Shi J, et al. Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Gut. 2018 Dec;67(12):2169-2180. doi:10.1136/gutjnl-2017-313778.

Zhang B, Yang W, Zou Y, et al. NEFA-sensitive orai1 expression in regulation of de novo lipogenesis. Cell Physiol Biochem. 2018;47(3):1310-1317. doi:10.1159/000490226.

Mazraati P, Minaiyan M. Hepatoprotective effect of metadoxine on acetaminophen-induced liver toxicity in mice. Adv Biomed Res. 2018 Apr 24;7:67. doi:10.4103/abr.abr_142_17.

Hong M, Han DH, Hong J, Kim DJ, Suk KT. Are probiotics effective in targeting alcoholic liver diseases? Probiotics Antimicrob Proteins. 2019 Jun;11(2):335-347. doi:10.1007/s12602-018-9419-6.

Sapozhnikov AG, Dorosevich AE. Gistologicheskaia i mikroskopicheskaia tekhnika [Histological and microscopic technique]. Smolensk: SAU; 2000. 476 p. (in Russian).

Stepanov YuM, Didenko VI, Klenina IA, Karachinova VA, Oshmianska NYu. Spectrum of serum fatty acids in patients with chronic diffuse liver disease depending on etiology and morphological features. Gastroenterologìa. 2018;(52):127-134. doi:10.22141/2308-2097.52.3.2018.141841. (in Ukrainian).

Ichihara K, Fukubayashi Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res. 2010 Mar;51(3):635-640. doi:10.1194/jlr.D001065.

Stepanov YuM, Didenko VI, Oshmianska NYu, et al. Alcohol-induced liver injury: morphological and biochemical features (experimental study). Gastroenterologìa. 2015;(57):66-72. doi:10.22141/2308-2097.3.57.2015.81529. (in Ukrainian).

Sufleţel RT, Melincovici CS, Gheban BA, Toader Z, Mihu CM. Hepatic stellate cells - from past till present: morphology, human markers, human cell lines, behavior in normal and liver pathology. Rom J Morphol Embryol. 2020 Jul-Sep;61(3):615-642. doi:10.47162/RJME.61.3.01.

Dash S, Aydin Y, Moroz K. Chaperone-mediated autophagy in the liver: good or bad? Cells. 2019 Oct 24;8(11):1308. doi:10.3390/cells8111308.

Dangi A, Huang C, Tandon A, Stolz D, Wu T, Gandhi CR. Endotoxin-stimulated Rat Hepatic Stellate Cells Induce Autophagy in Hepatocytes as a Survival Mechanism. J Cell Physiol. 2016 Jan;231(1):94-105. doi:10.1002/jcp.25055.



How to Cite

Didenko, V., Karachynova, V., Klenina, I., Gaidar, Y., Oshmianska, N., Hrabovska, O., Halinskyi, O., & Vishnarevskaya, N. (2022). Influence of hepatotropic and metabiotic correction on the spectrum of free fatty acids in experimental toxic liver damage. GASTROENTEROLOGY, 56(2), 82–88.



Original Researches

Most read articles by the same author(s)

1 2 3 4 > >>