Gut bacterial bile salt hydrolase activity correlates with cardiovascular risk: a case-control study

Authors

DOI:

https://doi.org/10.22141/2308-2097.54.4.2020.216711

Keywords:

bile salt hydrolase activity, dyslipidemia, cardiovascular risk

Abstract

Background. Serum cholesterol may be regulated by bile acid metabolism in the gut that depends on bacterial bile salt hydrolase (BSH) activity. There are limiting data regarding the clear effect of BSH on host lipid metabolism and cardiovascular risk (CVR). The investigation aimed to assess the relationship between the gut bacterial BSH relative activity (RA) and serum cholesterol with CVR levels. Materials and methods. The investigation was conducted as a case-control study and included 26 almost healthy participants (a control group) and 77 patients with dyslipidemia and without anamnesis of major cardiovascular events (a case group). The total RA of gut BSH, lipid profile, and CVR level according to 5 risk scores were assessed. Results. The RA of BSH was higher in healthy adults comparing to participants with dyslipidemia (p < 0.001). There were found moderate negative correlation between RA of gut bacterial BSH and total cholesterol (TC) (–0.38) and moderate correlation with low-density lipoproteins (LDL) (–0.36) with linear relationship that is defined by equation: LDL = –5.33 • RA of BSH + 4.479. It was revealed that with increasing of RA of gut bacterial BSH, the risk of dyslipidemia decreased (р < 0.001), OR = 1.06 • 10–10 (95% confidence interval; 2.5 • 10–15 – 4.5 • 10–6). There was found a moderate negative correlation between RA of gut bacterial BSH and CVR levels according to Globorisk score (–0.34), Fra­mingham score (–0.34), 2013 ACC/AHA algorithm (–0.32), PROCAM score (–0.35), and WHO risk chart (–0.34). Conclusions. The total RA of the gut bacterial BSH negatively correlated with TC, LDL, and CVR levels according to 5 risk scores and was negatively associated with the risk of dyslipidemia.

References

Mensah GA, Roth GA, Fuster V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J Am Coll Cardiol. 2019 Nov 19;74(20):2529-2532. doi:10.1016/j.jacc.2019.10.009.

WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019 Oct;7(10):e1332-e1345. doi:10.1016/S2214-109X(19)30318-3.

Mach F, Baigent C, Catapano AL, et al; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020 Jan 1;41(1):111-188. doi:10.1093/eurheartj/ehz455.

Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017 Aug 21;38(32):2459-2472. doi:10.1093/eurheartj/ehx144.

Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020 Apr;21(4):225-245. doi:10.1038/s41580-019-0190-7.

Charach G, Argov O, Geiger K, Charach L, Rogowski O, Grosskopf I. Diminished bile acids excretion is a risk factor for coronary artery disease: 20-year follow up and long-term outcome. Therap Adv Gastroenterol. 2017 Dec 4;11:1756283X17743420. doi:10.1177/1756283X17743420.

Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009 Oct;50(10):1955-66. doi:10.1194/jlr.R900010-JLR200.

Reis SA, Conceição LL, Rosa DD, Siqueira NP, Peluzio MCG. Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics. Nutr Res Rev. 2017 Jun;30(1):36-49. doi:10.1017/S0954422416000226.

Urdaneta V, Casadesús J. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Front Med (Lausanne). 2017 Oct 3;4:163. doi:10.3389/fmed.2017.00163.

Lau K, Srivatsav V, Rizwan A, et al. Bridging the Gap between Gut Microbial Dysbiosis and Cardiovascular Diseases. Nutrients. 2017 Aug 10;9(8):859. doi:10.3390/nu9080859.

Geng W, Lin J. Bacterial bile salt hydrolase: an intestinal microbiome target for enhanced animal health. Anim Health Res Rev. 2016 Dec;17(2):148-158. doi:10.1017/S1466252316000153.

Song Z, Cai Y, Lao X, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome. 2019 Jan 23;7(1):9. doi:10.1186/s40168-019-0628-3.

Huijghebaert SM, Hofmann AF. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures. J Lipid Res. 1986 Jul;27(7):742-52.

Joyce SA, MacSharry J, Casey PG, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7421-6. doi:10.1073/pnas.1323599111.

Hajifathalian K, Ueda P, Lu Y, et al. A novel risk score to predict cardiovascular disease risk in national populations (Globorisk): a pooled analysis of prospective cohorts and health examination surveys. Lancet Diabetes Endocrinol. 2015 May;3(5):339-55. doi:10.1016/S2213-8587(15)00081-9.

D'Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008 Feb 12;117(6):743-53. doi:10.1161/CIRCULATIONAHA.107.699579.

Goff DC Jr, Lloyd-Jones DM, Bennett G, et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014 Jun 24;129(25 Suppl 2):S49-73. doi:10.1161/01.cir.0000437741.48606.98.

Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation. 2002 Jan 22;105(3):310-5. doi:10.1161/hc0302.102575.

Guo CF, Li JY. Hypocholesterolaemic action of Lactobacillus casei F0822 in rats fed a cholesterol-enriched diet. International Dairy Journal. 2013;32(2):144-149. doi:10.1016/j.idairyj.2013.04.001Get.

Li H, Xu G, Shang Q, et al. Inhibition of ileal bile acid transport lowers plasma cholesterol levels by inactivating hepatic farnesoid X receptor and stimulating cholesterol 7 alpha-hydroxylase. Metabolism. 2004 Jul;53(7):927-32. doi:10.1016/j.metabol.2004.01.017.

Charach G, Grosskopf I, Rabinovich A, Shochat M, Weintraub M, Rabinovich P. The association of bile acid excretion and atherosclerotic coronary artery disease. Therap Adv Gastroenterol. 2011 Mar;4(2):95-101. doi:10.1177/1756283X10388682.

Downloads

Published

2020-09-01

Issue

Section

Original Researches