Topicality of identification of free fatty acids pattern in biologic substrates in the diagnosis of gastroenterological diseases

V.I. Didenko, I.A. Klenina, S.O. Babii, V.A. Karachynova


The article shows the role of free fatty acids in the pathogenesis of metabolic and gastroenterological disorders. An expediency of gas chromatography method for determination of free fatty acids pattern in biologic samples (blood serum, urine, feces and other) was substantiated. The role of free fatty acids in the cell structure components formation, energetic homeostasis and signal molecules or their precursor production was shown. So, disorders of regulation of free fatty acids metabolism lead to systemic fails of insulin action, such as glucose metabolism in adipocytes, muscles and liver. Increase in several fractions of lipid pattern takes place in different pathologic states. These changes occur earlier than changes of enzymes activity or other protein markers. For example, short chain fatty acids can be used for identification of syndrome of bacterial overgrowth in the intestines. Increasе in polyunsaturated fatty acid fraction activates inflammation process, immune reactions, blood hypercoagulation, activation of lipid peroxidation. Also, arachidonic (C20:0), dodecanoic (C12:0) and linoleic (C18:3) acids are markers of inflammation processes. In addition, deficiency of free fatty acids is very important aspect of diagnois. It can’t be uncertified by standard laboratory methods. Proven fact is that essential fatty acids can be a cause of metabolic syndrome, non-alcoholic fatty liver disease formation such as other diseases associated with metabolism. So, only chromatography today is a method for determination fatty acid pattern. The advantages of gas chromatography are rapid realization and high accuracy. Thus, identification of trace concentrations (about 10–12 mole) is possible. Implementation of this method into the clinical practice of gastroenterology specialists allows the early diagnosis of pathologies and choice of correct treatment.


gas chromatography; free fatty acids; short chain fatty acids; polyunsaturated fatty acids


Chen R, Han S, Dong D, Wang Y, Liu Q, Xie W, Li M, Yao M. Serum fatty acid profiles and potential biomarkers of ankylosing spondylitis determined by gas chromatography-mass spectrometry and multivariate statistical analysis. Biomed Chromatogr. 2015 Apr;29(4):604-11. doi: 10.1002/bmc.3321.

Wang DC, Sun CH, Liu LY, Sun XH, Jin XW, Song WL, Liu XQ, Wan XL. Serum fatty acid profiles using GC-MS and multivariate statistical analysis: potential biomarkers of Alzheimer's disease. Neurobiol Aging. 2012 Jun;33(6):1057-66. doi: 10.1016/j.neurobiolaging.2010.09.013

Cao H, Hotamisligil GS. Fatty acid C16: 1N7-palmitoleate a lipokine and biomarker for metabolic status: President And Fellows Of Harvard College. Pat. US 9239334 B2, IPC/US2009/056176. No. US 13/062,527; Date of Pat. Jan. 19, 2016.

Bulanova AV, Poliakov UL. Hromatografia v medicinie i biologii [Chromatography in medicine and biology]. 5th ed. Samara: Samarskiy universitet; 2006. 116 p. (In Russian)

Bogdanov M, Matson WR, Wang L, et al. Metabolomic profiling to develop blood biomarkers for Parkinson's disease. Brain. 2008 Feb;131(Pt 2):389-96. doi: 10.1093/brain/awm304.

Wikoff WR, Gangoiti JA, Barshop BA, Siuzdak G. Metabolomics identifies perturbations in human disorders of propionate metabolism. Clin Chem. 2007 Dec;53(12):2169-76. doi: 10.1373/clinchem.2007.089011.

Jiang M, Chen T, Feng H, et al. Serum metabolic signatures of four types of human arthritis. J Proteome Res. 2013 Aug 2;12(8):3769-79. doi:10.1021/pr400415a.

Perez-Cornago A, Brennan L, Ibero-Baraibar I, et al. Metabolomics identifies changes in fatty acid and amino acid profiles in serum of overweight older adults following a weight loss intervention. J Physiol Biochem. 2014 Jun;70(2):593-602. doi:10.1007/s13105-013-0311-2.

Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M, Sjöström M, Moritz T. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem. 2004 Mar 15;76(6):1738-45. doi: 10.1021/ac0352427.

Jonsson P, Johansson AI, Gullberg J, Trygg J, A J, Grung B, Marklund S, Sjöström M, Antti H, Moritz T. High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem. 2005 Sep 1;77(17):5635-42. doi: 10.1021/ac050601e.

Lien SK, Kvitvang HF, Bruheim P. Utilization of a deuterated derivatization agent to synthesize internal standards for gas chromatography-tandem mass spectrometry quantification of silylated metabolites. J Chromatogr A. 2012 Jul 20;1247:118-24. doi: 10.1016/j.chroma.2012.05.053.

Stigtera ECS, Letsioua S, Broeka NJ, et al. Development and validation of a quantitative LC-tandem MS assay for hexadeca-4,7,10,13-tetraenoic acid in human and mouse plasma. J Chromatogr B. 2013;925:16-19. doi: 10.1016/j.jchromb.2013.01.012.

Mironov AU. Gas chromatography and mass-specrometry in diagnosis of anaerobes. Almanah kilnicheskoy mediciny. 2012;26: 45-51. (In Russian)

Roy CC, Kien CL, Bouthillier L, Levy E. Short-chain fatty acids: ready for prime time? Nutr Clin Pract. 2006 Aug;21(4):351-66. doi: 10.1177/0115426506021004351.

Bloemen JG, Venema K, van de Poll MC, Olde Damink SW, Buurman WA, Dejong CH. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr. 2009 Dec;28(6):657-61. doi: 10.1016/j.clnu.2009.05.011.

Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL, Tian H, Li Y. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology. 2008 Sep;149(9):4519-26. doi: 10.1210/en.2008-0059.

Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4):e35240. doi:10.1371/journal.pone.0035240.

Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br J Nutr. 2006 May;95(5):916-24. doi: 10.1079/BJN20061740.

Kondo T, Kishi M, Fushimi T, Ugajin S, Kaga T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci Biotechnol Biochem. 2009 Aug;73(8):1837-43. doi: 10.1271/bbb.90231.

den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013 Sep;54(9):2325-40. doi:10.1194/jlr.R036012.

Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011 May 4;13(5):517-26. doi: 10.1016/j.cmet.2011.02.018.

Fedorciv OE, Yarea NM. Omega-3 polyunsaturated fatty acids and peroxide lipid oxidation process in the patients suffering from juvenile rheumatoid arthritis. Sovremennaya pediatriya. 2010;4:90.

Ormseth MJ, Swift LL, Fazio S, et al. Free fatty acids are associated with insulin resistance but not coronary artery atherosclerosis in rheumatoid arthritis. Atherosclerosis. 2011 Dec;219(2):869-74. doi: 10.1016/j.atherosclerosis.2011.09.005.

Boden G, She P, Mozzoli M, Cheung P, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes. 2005 Dec;54(12):3458-65. doi: 10.2337/diabetes.54.12.3458.

Frommer KW, Schäffler A, Rehart S, Lehr A, Müller-Ladner U, Neumann E. Free fatty acids: potential proinflammatory mediators in rheumatic diseases. Ann Rheum Dis. 2015 Jan;74(1):303-10. doi: 10.1136/annrheumdis-2013-203755.

Shysh AM, Kaplinskii SP, Nagibin VS, Dosenko VYe, Moybenko OO. Investigation of anti-inflammatory action of omega-3 polyunsaturated fatty acids. Pathology. 2011;8(3):74-77. (In Russian)

Breslow JL. n-3 fatty acids and cardiovascular disease. Am J Clin Nutr. 2006 Jun;83(6 Suppl):1477S-1482S. PMID: 16841857.

Abbate A, Salloum FN, Vecile E, et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation. 2008 May 20;117(20):2670-83. doi: 10.1161/CIRCULATIONAHA.107.740233.

Copyright (c) 2020 V.I. Didenko, I.A. Klenina, S.O. Babii, V.A. Karachynova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта